Attopsemi Published a Paper in ICMTS 2016, Yokohama, Japan

Hsinchu, Taiwan – May 2, 2016

Attopsemi published a paper “Ultra-small and Ultra-reliable Innovative Fuse Scalable from 0.35um to 28nm” in 2016 International Conference on Microelectronic Test Structures (ICMTS). ICMTS was held in March 28 to 31, 2016 in Yokohama Japan and is the only conference dedicated to semiconductor test structures.

In the well-received paper, Attopsemi showed her I-fuse™, a fuse-based OTP, is programmed below a critical current. Based on collected data from 0.35um to 28nm fabricated with different materials such as WSi2, TiSi2, CoSi2, NiSi, and metal gates, the critical current is proven as the on-set of thermal run away. If a fuse is programmed below the critical current, the programming behavior is deterministic, controllable, and can be modeled precisely by physical laws as heat generation and dissipation. On the other hand, if a fuse is programmed above the critical current, as the conventional eFuse does, the programming behavior is like an explosion. The debris created after explosion can micro-bridge again and becomes shorts to cause long term reliability issues. Programmed below the critical current, I-fuse™ can easily pass the conventional 150oC HTS and 125oC HTOL for 1,000 hours, Moreover, I-fuse™ showed the OTP can pass 300oC for 4,290 hours with less than 10% of cell current changes.

Please refer to the following links for more information.